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This study utilizes deep neural networks and random forests to predict the thermophysical
properties of ionic liquids (ILs), focusing on viscosity and liquid phase transition temperature
(LPTT) at atmospheric pressure. The goal is to identify novel ILs with superior properties for
spacecraft thermal control, surpassing current heat transfer fluids. Two curated datasets were
employed: 1,139 ILs for viscosity predictions, incorporating temperature and 210 molecular
descriptors as features, and 1,458 ILs for LPTT predictions with 210 molecular descriptors.
The study explores various training-test split strategies and model configurations to optimize
predictive performance. These optimized models were then applied to predict the properties of
328,740 generated IL permutations, targeting low viscosity and LPTT values below 243 K. This
work provides a scalable framework for designing high-performance ionic liquids, contributing
to the development of advanced thermal management systems for extreme environments.

I. Introduction

Thermal control subsystems are essential for spacecraft survival and performance, especially in extreme environments
like lunar and deep space missions, where components must operate within specific temperature ranges. Active

thermal control technologies such as single-phase pumped fluid loops are used in various robotic and human spacecraft
[1–4]. Pumped fluid loop cooling was used for robotic missions such as Mars Pathfinder (1996), Mars Exploring Rovers
(2003), Mars Science Laboratory (2011), and Mars Rover (2020) [1, 5]. Human spacecraft have utilized single-fluid (e.g.,
Apollo, Gemini) or two-fluid (e.g., Space Shuttle, ISS, Orion) loop configurations [4]. Two-fluid systems minimize
crew exposure to hazardous fluids by isolating them in external loops, while enhancing robustness to handle varying
heat loads and external thermal conditions. However, these systems require additional hardware to support separate
fluid loops, significantly increasing overall system mass [6–9].

Some of the common fluids used in single-phase pumped fluid loops include water, glycol, and ammonia as well as
engineered fluids such as Freon-21, HFE-7200, and Fluorinert FC-72 [5]. Some of these fluids are toxic and have either
been discontinued or restricted exclusively to the use of external spacecraft fluid loops. Beyond minimizing toxicity,
future missions in extreme space environments necessitate enhanced thermal transport and fluidity properties to meet
the system requirements. The development of novel fluids for single-phase pumped fluid loops can enhance operational
flexibility, reduce system mass, and further mitigate risks to the crew. For instance, fluids with higher specific heat
would improve thermal energy transport by carrying more heat per unit flow, while higher thermal conductivity would
enhance the convective heat transfer in heat exchangers, boosting system efficiency [10]. Additionally, fluids with lower
viscosity would reduce the pressure drop, thereby reducing the pump power required. Previous efforts to enhance the
thermophysical properties of heat transfer fluids have explored nano-particle suspensions, which effectively improve
thermal conductivity. However, their significantly higher viscosity necessitates larger, bulkier pump systems, resulting
in an overall increase in system-level mass [2]. Thus, careful consideration of the systems-level implications is essential
in evaluating any candidate fluids.

Tailored ionic liquids (ILs) are promising candidates as heat transfer fluids due to their high thermal stability at
elevated temperatures and low vapor pressure [11, 12]. ILs are composed of ions that are positively charged (i.e., cations)
and negatively charged (i.e., anions), which are held together by electrostatic forces. These forces and interactions give
rise to the aforementioned unique properties of ILs and allow for tailoring of other fluid properties by careful design of
the anion-cation pairing. However, there are 108 theoretical pairings, thus traditional computational and experimental
methods are prohibitively time and cost intensive for identifying tailored ion species combinations.

To address this challenge, machine learning (ML) methods have recently been proposed. The choice of a ML model
for IL predictions ultimately depends on the quality and quantity of the available data and the specific property being
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predicted. Among these models, neural networks are widely used due to their ability to handle complex, non-linear,
and high-dimensional datasets. Several studies have shown the reliability of neural networks as regression models for
IL research. More than 2,000 known ILs are available for model training and validation, with additional ones under
ongoing synthesis and characterization. However, some properties of ILs, such as ionic conductivity and viscosity, are
more available than others, such as melting point. In fact, given their applicability to energy storage and electrochemical
conversion, ILs have primarily been characterized by ionic conductivity, solubility, viscosity, density, and toxicity,
followed by some studies on melting point, thermal conductivity, and heat capacity [13]. Datta et al. predicted the ionic
conductivity of ILs using deep neural networks (DNN) and investigated the impact of different data-splitting approaches,
defined as data-points-split and IL-split [14], achieving coefficients of determination of 0.96 and 0.83, respectively.
They also identified key molecular descriptors that are correlated with this property, which can be used in the design
of new ILs. Valderrama et al. were among the first to conduct research on predicting the viscosity of ILs using ML
methods [15]. They used an artificial neural network (ANN) and achieved satisfactory results, with deviations below
5% for all 31 predictions, despite the limited number of unique ILs and features such as temperature, density, mass of the
cation, anion, and mass connectivity index. Paduszyński and Domańska used a feed-forward artificial neural network
(FFANN) with temperature, pressure, and group contributions as features to predict the viscosity of 1,484 unique ILs
[16]. Their method performed very well overall, achieving a mean squared error of 0.0603 log units and a coefficient of
determination of 0.972 on the test set, though lower performance was observed for ILs with considerable data scatter or
limited data for certain cations and anions. Following this, Paduszyński compared multiple linear regression (MLR),
feed-forward artificial neural network (FFANN), and least-squares support vector machines (LSSVM) methods, using a
larger dataset of 2,068 unique ILs and group contributions as features [17]. FFANN and LSSVM performed well on the
test set, with coefficients of determination of 0.8637 and 0.8374, but they advised using these models cautiously within
validated cation and anion groups to avoid uncertainties in predictions. Acar et al. used deep neural networks (DNN)
and convolutional neural networks (CNN) with molecular descriptors to successfully predict viscosity data at room
temperature [18]. They found that feature reduction improved results and that CNN slightly outperformed DNN, with
coefficients of determination of 0.998 and 0.9869, respectively. Another commonly used ML model is Random Forest
(RF), which can be successfully used in both classification and regression problems. Similar to DNN models, RF can
handle non-linear relationships, however, it is better suited for smaller datasets. Venkatraman et al. employed RF for
both regression and classification to predict the melting point of ILs, and achieved particularly promising results [19].
The regression model had coefficients of determination of 0.67 for training and 0.66 for testing, while the classification
model achieved 0.84 training accuracy and 0.81 test accuracy. Venkatraman et al. also utilized RF regression model to
predict 𝐶𝑂2 solubility of and demonstrated good performance with a coefficient of determination of 0.85 on a test set
including unique ILs not used in training [20]. Furthermore, to predict melting points, Low et al. used a Kernel Ridge
Regression (KRR) model and compared its performance to other models, including those by Venkatraman et al., which
achieved a coefficient of determination of 0.66. The KRR model showed improved results, achieving a coefficient of
determination of 0.76 [20, 21]. Nevertheless, compared to some of the other IL properties, such as viscosity and 𝐶𝑂2
solubility, melting point predictions were less accurate. Combined with the small dataset size, the primary reason for
this limitation was recognized as the feature set’s inability to effectively define changes in chemical interactions during
solid-to-liquid transitions [22]. All these studies share the common goal of predicting the thermophysical properties
of ILs using ML models, differing mostly in preprocessing techniques and model types. This research expands upon
prior work by transforming the melting point dataset into the liquid phase transition temperature (LPTT) dataset by the
inclusion of related equilibrium temperature data, which contains both liquid-crystal and glass transition temperatures.
Additionally, the IL-split approach, adapted from Datta et al., was used for viscosity dataset splitting to develop a robust
model capable of predicting the properties of unknown ILs [14]. This study diverges further by leveraging trained and
tested models to predict the viscosity and LPTT of novel ILs, with the ultimate goal of validating these predictions
experimentally and feeding the results back into the models in future research.

The current study focuses on the development of ML models for IL properties particularly relevant to pumped
fluid loops, i.e., viscosity and LPTT. During model developments, the effects of data-splitting methods and model
configurations on performance were analyzed. Once high-performance models were identified, novel ILs were generated
from unique cation and anion combinations. These models were then used to predict the viscosity and LPTT of the
novel ILs, establishing a workflow of training and evaluating models, followed by their application to identify ILs with
advantageous properties. This workflow aims to address the significant research gap in ILs as heat transfer fluids and
contribute to long-term advancements in this field.
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II. Methodology

A. Dataset gathering and preparation
The pyILT2 Python library was used to access the NIST (National Institute of Standards and Technology) ILThermo

Database (SRD#147) v2.0 and extract datasets for 2,620 unique pure ILs in different phases [12, 23]. The datasets
consist of chemical and physical properties documented from experimental studies in the literature. In pursuit of
designing novel ILs with superior thermophysical properties for use as working fluids in spacecraft single-phase pumped
fluid loop thermal control systems, data on melting point, equilibrium temperature, viscosity, thermal conductivity, and
heat capacity were identified for further processing. The distributions of thermophysical properties were studied to
understand the relationship between temperature and the targeted properties. Since this research focuses on atmospheric
conditions, datasets were filtered to a pressure range of 101.325 ± 2 kPa. Table 1 provides detailed information on the
number of unique ILs, data points, temperature ranges, and property ranges for each targeted thermophysical property of
pure ILs in the liquid phase under atmospheric conditions. The data in the table does not encompass all available data
under liquid phase and atmospheric conditions. Some data for unique ILs were excluded because the feature generation
method, which is described in the next section, could not be applied to those ILs.

Table 1 Filtered ILThermo database of target thermophysical properties of pure ILs in liquid phase under
atmospheric conditions.

Property # Unique ILs # Data Points Temp. Range [K] Data Range
Melting Point 759 1,135 215.95 – 581.6 215.95 – 581.6 [K]
Equilibrium Temp. 1,000 1,796 120 – 651.1 120 – 651.1 [K]
Viscosity 1,139 19,926 191.2 – 537 10−4 – 2 × 109 [Pa·s]
Thermal Conductivity 85 753 273.15 – 438.07 0.1032 – 0.97 [W·m−1·K−1]
Heat Capacity 305 12,263 167.7 – 663.1 23.1 – 7,970 [J·K−1·mol−1]

Given the application to proposed pumped fluid loops, our goal was to identify ionic liquids (ILs) with the widest
temperature range in their liquid phase. The melting point represents the crystal-to-liquid transition temperature for
ILs. The equilibrium temperature property also includes crystal-liquid and liquid-glass phase transition information.
Although liquid-glass transitions differ significantly, as it requires supercooling to achieve, the glass transition data were
used when melting point information was unavailable for a given IL. Consequently, the melting point and equilibrium
temperature data were merged, giving 466 unique ILs with melting point, 699 with equilibrium temperature, and
293 present in both. For ILs in both datasets, melting point data were prioritized to avoid the lower glass transition
temperatures, ensuring consistency in capturing the highest liquid-solid transition temperature. After merging and
filtering, the new dataset was named “Liquid Phase Transition Temperature (LPTT)”.

The datasets before data cleaning are shown in Fig. 1, which illustrates the regions with sparse data, particularly at
low and elevated temperatures. After examining the dataset, predictions of LPTT and viscosity were chosen as the
primary focus for this study. LPTT is the most critical property for determining the operability of the working fluid in
spacecraft thermal control systems, and the viscosity also has a direct impact on loop system performance. During the
comprehensive study of viscosity and LPTT data, inconsistencies were detected due to multiple sources for a given IL
and temperature. For LPTT, multiple temperature values were reported for the same IL, while viscosity data showed
different values for the same IL at the same temperature. To resolve inconsistencies, the median of these values was
computed. The datasets were then grouped by unique ILs and, for viscosity, by temperature as well. This data cleaning
process improved data consistency but reduced the number of data points for both properties. As a result, the final
viscosity dataset included 1,139 unique ILs with 13,605 data points, while the LPTT dataset contained 1,458 unique ILs
and equal number of data points.

B. Featurization
Featurization transforms physical and chemical attributes of ILs into vector representations. These vectors enable

ML models to uncover complex relationships between IL properties and operating conditions, beyond the scope of
traditional analysis. In molecular featurization, the unique chemical information encoded of each IL is translated into a
numerical and machine-readable format that can be used to distinguish them. To achieve this, the chemical structures
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(a) (b)

(c) (d)

Fig. 1 Data distributions of thermophysical properties of pure ILs in liquid phase at atmospheric pressure.
(a) The LPTT distribution is shown (gray), as well as with a distinction between data sources: only melting
point data (purple), only equilibrium temperature data (yellow), and combined data where melting point was
prioritized (green). (b) and (c) Viscosity and heat capacity as a function of temperature, scaled to log10 due to
their wide data range. (d) thermal conductivity as a function of temperature.

were converted to the Simplified Molecular Input Line Entry System (SMILES) convention, which expresses the 3-D
connectivity of a molecule as a canonical string. Leveraging the py2opsin Python library, chemical names of the ILs
were converted to SMILES strings, which were then used to obtain molecular descriptors through the RDKit package
[24, 25]. Molecular descriptors were obtained using two methods, both of which included the generation of SMILES
string from chemicals. In the first method, SMILES strings were directly obtained from ILs, which resulted in 210
molecular descriptors. Whereas, in the second method, ILs were separated into their cation and anion components,
individual SMILES strings were generated for each, and 420 molecular descriptors were obtained. No significant
difference in accuracy was found between the two methods. However, the cation-anion separation method reduced the
number of unique ILs due to difficulties in obtaining some SMILES strings. Therefore, to maximize the number of
unique ILs and minimize overfitting risks, the whole ILs method was chosen to generate the feature set.

In Fig. 2, the steps of the featurization process are illustrated, and four out of 210 molecular descriptors are
provided for illustration. This process was applied to all unique ILs in both the viscosity and LPTT datasets. Following
this, feature reduction methods were applied to reduce complexity and improve performance by removing the least
important features, thereby mitigating issues associated with high dimensionality, such as overfitting. First, zero variance
features were eliminated because they provide no informational value. Next, a correlation matrix was generated to
identify fully correlated pairs, and one feature from each pair was removed to avoid redundancy. Additionally, features
containing missing data were dropped since some ML models cannot process datasets with missing values. Finally,
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feature importance was assessed using Least Absolute Shrinkage and Selection Operator (LASSO) regression model to
determine the most important features and eliminate the rest [26, 27].

Fig. 2 Schematic representation of the featurization process used for molecular descriptor generation. Ionic
liquids (ILs) are converted to SMILES strings, enabling numerical encoding of their molecular structures.

C. Training and test dataset splitting and scaling
To evaluate and test the model’s performance, the viscosity dataset was split into the training and test sets using two

methods: data-points-split and IL-split [14]. The data-points-split method, an entirely random approach, potentially
allows the same ionic liquid to appear in both training and test sets. Hence, this method provides a broad variety of ILs
and features for both sets. It is ideal for predicting the properties of already-known ILs at unmeasured temperatures. In
contrast, the IL-split method groups data points by their corresponding unique ILs and ensures no overlap between
training and test sets, which is crucial for predicting properties of completely new ILs. Also, during the splitting, care
was taken to exclude extreme low and high-temperature data from the test set to ensure the ML model is trained with a
broader range of temperature. An 80% training, 10% test, and 10% validation split ratio was used for both methods.
Note that validation data was randomly split using the data-points-split method after separating the test set, as it is
part of the training process to tune the model. On the other hand, the LPTT dataset was randomly split using the
data-points-split method with a 90% training and 10% test ratio. Since each unique IL in the LPTT dataset is linked
with a single temperature value, random splitting overlap between the training and test sets cannot occur. Additionally, a
validation set was not required for the ML model of LPTT.

In Table 2, temperature statistics for the IL-split five training and test sets of the viscosity dataset are listed. These
sets vary in the number of unique ILs, features, and temperature ranges. The variance in the number of features arises
from the application of feature reduction methods to the training set after splitting. In addition to differences in the
number of ILs, as shown in Fig. 3, each set contains a variety of cation and anion cores. The most common cation
and anion cores were identified as imidazolium and 𝑁𝑇 𝑓2 derivatives, which are also the most frequent pairings in the
training set. To compare the differences between the IL-split and data-points-split methods, statistics for a randomly split
training and test set are provided in Table 3. Unlike the IL-split method, the data-points-split method includes unique
ILs that appear in both the training and test sets. While IL-split test sets contain over 100 unseen ILs, the randomly split
test set includes only 21 unique ILs, with the rest also present in the training set. Additionally, the randomly split test set
covers a broader temperature range compared to the IL-split test sets. For LPTT, the statistics for the randomly split
training and test sets are given in Table 3.

Next, the features were scaled using the min-max normalization method, which transformed each feature into a
range of values between 0 and 1. The exact minimum and maximum values were then used to transform the test set.
Additionally, viscosity was scaled using the logarithmic base ten (log10) due to its wide data range.
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Table 2 Temperature statistics for IL-split train and test sets of the viscosity dataset.

Set Features Train Test

ILs Mean ± Std [K] Min – Max [K] ILs Mean ± Std [K] Min – Max [K]

#1 97 1033 322.19 ± 30.57 191.2 – 573.0 106 319.79 ± 23.75 278.15 – 573.0
#2 117 1032 322.12 ± 30.64 191.2 – 573.0 107 320.46 ± 22.98 278.15 – 433.15
#3 96 1035 322.07 ± 30.70 191.2 – 573.0 104 320.98 ± 22.26 278.15 – 398.15
#4 96 1033 322.02 ± 30.69 191.2 – 573.0 106 321.39 ± 22.34 278.15 – 423.1
#5 99 1032 321.94 ± 30.47 191.2 – 573.0 107 322.16 ± 25.07 278.15 – 573.0

Fig. 3 Cation and anion cores of IL-split test sets for viscosity.

Table 3 Temperature statistics for data-points-split train and test sets of the viscosity and LPTT datasets. For
the viscosity dataset, 475 ILs in the training set are not present in the test set, and 21 ILs in the test set are not in
the train set.

Dataset Train Test

ILs Mean ± Std [K] Min – Max [K] ILs Mean ± Std [K] Min – Max [K]

Viscosity 1118 321.86 ± 39.15 191.2 – 573.0 664 322.89 ± 28.51 201.2 – 458.1

LPTT 1326 293.11 ± 75.79 170 – 581.6 132 305.61 ± 62.09 193 – 411.1
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D. Machine Learning model development
ML model development process is explored separately for viscosity and LPTT due to fundamental differences in

their data sizes and nature.

1. Model development for viscosity
Regression models were investigated for viscosity. Given the complex and non-linear nature of the viscosity data,

the deep neural network (DNN) was selected as the ML model for this research. The DNN models were developed
with TensorFlow 2.16.1 with several key adjustable hyperparameters, including the number of hidden layers, nodes per
layer, optimizer, activation function, and loss function [28]. In Fig. 4, the architecture of the DNN model developed for
viscosity is shown. The ReLU activation function, Adam optimizer, and Mean Squared Error (MSE) loss function, as
indicated in the diagram, are fixed hyperparameters in this study [29]. Other hyperparameters, such as the number of
hidden layers and nodes per layer, were tuned to optimize model performance. During this process, 200 epochs and a
batch size of 32 were found to be reliable across all models investigated. The hyperparameter tuning process began with
model configurations consisting of 3, 4, and 5 hidden layers with 16, 32, 64, 128, 256, 512, 1024 nodes per layer. Once
the model with best performance was identified, more detailed tuning was conducted around that configuration. These
more detailed configurations are listed in Table 4, with varying hidden layers and nodes per layer.

Table 4 List of DNN model configurations for detailed hyperparameter tuning.

Model Hidden Layer Configuration Model Hidden Layer Configuration

1 [128, 256, 256, 128] 8 [64, 128, 256, 128, 64]
2 [200, 200, 200, 200] 9 [128, 256, 320, 256, 128]
3 [256, 256, 128, 128] 10 [256, 128, 64, 32, 16]
4 [256, 256, 256, 256] 11 [256, 256, 256, 256, 256]
5 [256, 512, 512, 256] 12 [64, 128, 256, 512, 128, 64]
6 [280, 280, 280, 280] 13 [128, 256, 256, 256, 256, 128]
7 [320, 320, 320, 320] 14 [256, 256, 256, 256, 256, 256]

Fig. 4 Architecture of the DNN model for viscosity.
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2. Model development for LPTT
Regression models, including Deep Neural Networks (DNN), Random Forest Regressor, and Support Vector

Machine, were initially evaluated for predicting Liquid Phase Transition Temperature (LPTT). However, due to the
relatively small size of the LPTT dataset, these models yielded unsatisfactory performance, even after extensive
hyperparameter optimization. Consequently, a classification approach was adopted, focusing on categorizing ILs based
on whether their LPTT was above or below a predetermined threshold.

The Random Forest Classifier was selected for this task, as shown in Fig.5. Hyperparameter tuning via grid search
revealed minimal sensitivity to parameter variations. The optimal model configuration included 400 estimators, square
root scaling for the maximum number of features per split, and unrestricted tree depth. Table 5 summarizes four model
configurations, each defined by a different temperature threshold for classification. LPTT values were labeled as “high”
or “low” relative to the threshold, encoded as 1 and 0, respectively, prior to feature selection. The final feature set varied
with the threshold, as detailed in Table 5.

Fig. 5 Architecture of the Random Forest Classifier model for LPTT.

Table 5 LPTT RF Classifier model configurations with various thresholds.

Threshold [K] Number of
Features

Number of
Estimators

Max. Features
Selected per Split

Max. Depth
of Tree

323 92 400 ’sqrt’ None
293 75 400 ’sqrt’ None
243 75 400 ’sqrt’ None
223 70 400 ’sqrt’ None

3. ML model performance evaluation criteria
The MSE loss function is used to evaluate progress during training of the viscosity DNN model. The loss values for

both training and validation sets are examined through the epochs to identify potential overfitting or underfitting. If the
model demonstrates a good fit, it is then tested using additional metrics. Criteria such as Root Mean Squared Error
(RMSE), the coefficient of determination 𝑅2, and residual error are used to evaluate the model’s performance. The
equations for these criteria are provided in Eqs.( 1 - 4), where 𝑦𝑖 represents the actual value, �̂�𝑖 the predicted value, and
𝑛 is the number of data points.
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MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (1)

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (2)

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − �̂�𝑖)2∑𝑛
𝑖=1 (𝑦𝑖 − �̄�)2 (3)

𝑟𝑖 = 𝑦𝑖 − �̂�𝑖 (4)

For LPTT predictions, classification metrics such as accuracy, precision, recall, and F1-score were used. The
equations for these metrics are provided in Eqs.( 5 - 8). These metrics are derived from the confusion matrix generated
from the results, which is shown in Fig. 6 with label definitions.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

𝐹1 = 2 · Precision · Recall
Precision + Recall

(8)

Fig. 6 Confusion matrix with label definitions.

E. Generation and preprocess of novel ILs
To achieve the objective of designing novel ILs with specific thermophysical properties that surpass those of current

heat transfer fluids, 328,570 ionic liquids (ILs) were generated through cation and anion combinations. Then standard
preprocessing steps were applied to generate molecular descriptors and prepare the datasets for ML predictions, with
a slight modification to the feature reduction process, keeping only the features used to train the models. For the
viscosity dataset, the feature set was expanded by adding four target temperatures (153 K, 193 K, 243 K, and 293 K) for
predictions.
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III. Results and Discussion

A. Viscosity

1. Impact of data-splitting method
To compare the outcomes of IL-split and data-points-split methods, a DNN model with four hidden layers and 256

neurons per layer was trained and tested on datasets partitioned using these two approaches. IL-split training-test sets #3
from Table 2 and a randomly split sets from Table 3, both utilizing the same 96 features, were employed in this process.
The results, shown as parity plots in Fig. 7, illustrate the relationship between actual and predicted viscosity values
with temperature variations. The randomly split test set achieved an 𝑅2 value of 0.981, indicating strong predictive
performance across a broader temperature and viscosity range. In comparison, the IL-split method accomplished an 𝑅2

value of 0.902, which indicates a relatively weaker performance. The difference arises from the nature of the splits: the
randomly split test set contains only 21 unique ILs, while the IL-split test set includes 104. The smaller number of
unique ILs in the random split allows for better model performance due to greater feature overlap with the training set.
Therefore, the results from the randomly split test set are closer to the perfect fit line, with minor deviations, while
the IL-split method are more scattered. Some of these deviations in the IL-split results can be attributed to unique
IL-specific trends, which implies the model’s difficulty in generalizing patterns that connect molecule descriptor features
to viscosity. Although the data-points-split method performs better when the test set has fewer unseen ILs, the IL-split
method was chosen to evaluate performance on unseen ILs for novel design. Despite its lower 𝑅2 value of 0.902, which
corresponds to ∼ 90% accuracy and acceptable performance given dataset limitations.

(a) IL-split method (b) Data-points-split method

Fig. 7 Parity plots in logarithmic base ten scale comparing DNN models with 4 hidden layers, 256 neurons per
layer, using (a) IL-split and (b) data-points-split methods with the same 96 features.

2. Impact of DNN configurations
Several configurations were tested, including 3, 4, and 5 hidden layers with 16, 32, 64, 128, 256, 512, and 1024 nodes

per layer. The models demonstrated consistent performance, with an average 𝑅2 score of 0.87. Notably, configurations
with 4 hidden layers and 256 nodes per layer, as well as 3 hidden layers and 1024 nodes per layer, achieved 𝑅2 > 0.90.
The model with 4 hidden layers and 256 nodes per layer was selected as the base model for further tuning, as it offered
comparable performance while avoiding unnecessary complexity and excessive computational costs.

After determining a range of nodes per layer and hidden layers for the model, more detailed tuning was conducted
and 14 configurations, listed in Table 4, were investigated. These models were trained on 5 different training-test sets,
given in Table 2. It is important to note that during the training process, the training and validation loss functions were
monitored throughout the epochs, and no signs of underfitting or overfitting were detected. In Fig. 8, model performance
for both training and test sets is given for 14 model configurations and 5 training-test splits. The training performances
of all model configurations showed consistency, with high 𝑅2 values (most exceeding 0.99) and low variability, which
indicates that the models fit the training data well. Compared to the training results, test performance showed overall
lower 𝑅2 values and higher variability across configurations and training-test splits. Nonetheless, given the diversity
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of unique ILs in the test sets, this difference was expected. Furthermore, most models (e.g., 1, 2, 3, 5, 8, 9, 10, 11,
12, 13, 14) demonstrated strong performance for test sets #1 and #3 but performed poorly on the other test sets, which
resulted in significant accuracy variance. Models 6 and 7 showed better consistency across test sets but did not achieve
the highest performance. On the other hand, model 4 had the best performance for test set #3 while maintaining more
consistent results across the other sets. Consequently, among the evaluated configurations, model 4 (with 4 hidden
layers and 256 nodes per layer) was chosen as the best model for viscosity predictions in this study. It displayed the
highest generalization ability and the best performance by achieving 𝑅2=0.992 and RMSE = 0.079 [log10(Pa·s)] for
training, and 𝑅2=0.902 and RMSE = 0.223 [log10(Pa·s)] for test set #3.

Fig. 8 DNN training and test 𝑅2 performance across different configurations for data sets listed in Table 2.

Figure 9 shows the residual error distribution of the test set (#3) predictions. The residuals exhibit a near-normal
distribution, with high symmetry around zero and both the mean and median close to zero. The lack of skewness
indicates that the model does not systematically underpredict or overpredict. The distribution’s short tails suggest that
extreme errors are rare, with most being slightly negative, reflecting instances of overprediction. These outliers are
evident in Fig. 7a, where a few predictions deviate notably from the trend. Overall, the model demonstrates robust
performance, with minimal random errors and a slight negative bias.

As model’s general performance was analyzed, its performance was also evaluated across different temperature
ranges. For this purpose, RMSE and 𝑅2 results for temperature ranges between 250 to 400 K, divided into 50 K intervals,
are given in Fig. 10. The model performs better at higher temperatures in the test set, which is also apparent in Fig. 7a,
where the more diverged predictions occurred at lower temperatures. This was expected, as the mean temperature of the
training set is around 322 K. While model performance at low temperatures is particularly important for this project due
to the focus on lower temperatures, an 𝑅2 of 0.85 is still reasonably acceptable and not indicative of a poor performance.

Shapley Additive Explanations (SHAP) values, which quantify each feature’s contribution to predictions, were used
to interpret the model’s performance [30]. Figure 11 shows the SHAP value distributions for 20 out of 96 features.
Out of all features, temperature stands out as the most dominant, having the greatest influence on predictions of
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Fig. 9 Residual error distribution of the predictions (DNN model: 4 hidden layers, 256 nodes per layer).

Fig. 10 RMSE and 𝑅2 distribution across temperature ranges (DNN model: 4 hidden layers, 256 nodes per
layer).

viscosity. The SHAP values for temperature follow an anticipated trend: when temperature increases (red), SHAP
values shift to negative, which indicates a decrease in viscosity. This supports the well-established inverse relationship
between viscosity and temperature. In opposition, lower temperatures (blue) with positive SHAP values signifies higher
viscosity. Among the molecular descriptors, maximum absolute partial charge (“MaxAbsPartialCharge”) shows the next
highest influence on predictions. The significantly higher influence of temperature compared to molecular descriptors
highlights a limitation of the model, as its performance on predicting viscosity across unique ILs is relatively lower. This
emphasizes the need to identify more influential features that better characterize ILs and their relationship with viscosity.
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Fig. 11 Impact of features using SHAP values on the viscosity predictions (DNN model: 4 hidden layers, 256
nodes per layer).

B. LPTT
Regression models performed poorly for LPTT data, by obtaining and an 𝑅2 ≈ 0.50 while showing signs of

overfitting, likely due to the small dataset size. For classification, model training was conducted for four different
temperature thresholds, and performance was evaluated using accuracy, precision, recall, and F1 score criteria for both
training and test sets, as listed in Table 6. While the model fits the training set perfectly, the disparity in performance
between the training and test sets suggests potential overfitting. The best performance is observed at the highest threshold
323 K, with a decline as the threshold decreased. This trend is likely because the 323 K threshold is above the mean
temperature of the training set, resulting in a more balanced label distribution (0: high and 1: low) and providing the
model with better patterns to learn. As the thresholds decrease, fewer data points are labeled as low, reducing the
model’s ability to identify meaningful patterns, particularly given the small dataset size. Despite this, test performance
remains acceptable even at the lowest threshold. Figure 12 presents confusion matrices comparing predicted and
actual results, showing a reduction in low-temperature predictions as the threshold decreases, which corresponds to the
observed decline in model performance.

Table 6 Training and testing metrics for different thresholds.

Features Threshold [K] Accuracy Precision Recall F1 Score

Train Test Train Test Train Test Train Test

92 323 1.0 0.86 1.0 0.83 1.0 0.94 1.0 0.88
75 293 1.0 0.82 1.0 0.79 1.0 0.76 1.0 0.77
75 243 1.0 0.89 1.0 0.77 1.0 0.69 1.0 0.73
70 223 1.0 0.88 1.0 0.68 1.0 0.57 1.0 0.62
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Fig. 12 Confusion matrix of LPTT results for four thresholds listed in Table 6.

C. Screening generated ILs for target properties
After training and evaluating the viscosity and LPTT ML models, as illustrated in Fig. 13, the feature sets of 328,740

generated unique ILs were fed into the trained models. Viscosity predictions were obtained from the DNN model (model
4 – trained and tested with set #3), while LPTT predictions were classified whether values were lower or higher than the
243 K threshold. The diagram also highlights the model performances and the resulting predictions for the generated
ILs. The results from both viscosity and LPTT predictions were merged into a single dataset for further evaluation. ILs
with LPTT lower than 243 K were selected, and their viscosity predictions were sorted based on the values at 153 K.
From this, the 10 generated ILs with the lowest viscosities were selected and are presented in Fig. 14. The ILs with the
“3-azido-1-(2-azidoethyl)-1H-1,2,4-triazol-1-ium” cation were identified as having the lowest viscosities at 153 K and an
LPTT lower than 243 K. While no experimental data exist for these ILs to confirm the predictions, related data suggest
the results may be promising. Specifically, the IL “3-azido-1-(2-azidoethyl)-1H-1,2,4-triazol-1-ium nitrate” has an
LPTT value of 219.1 K, which makes the other results promising, as they share the same cation. However, the influence
of different anions on the properties remains uncertain. For comparison, the IL “1-(2-azidoethyl)-1,2,4-triazolium
perchlorate” has a melting point of 217 K [31]. The generated IL “3-azido-1-(2-azidoethyl)-1H-1,2,4-triazol-1-ium
perchlorate” shares the azidoethyl group and triazolium core, where a similar trend in LPTT could be expected.
Furthermore, the generated IL has an asymmetrical structure, further supporting the plausibility of the predictions.
However, the accuracy of the viscosity predictions remains uncertain, particularly at 153 K, a temperature at which the
ILs are likely to exist in a solid state.
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Fig. 13 Workflow of viscosity and PTT prediction models for generated ILs.

Fig. 14 Log10 scaled viscosity vs. temperature for 10 generated ILs with low viscosity and LPTT below 243 K.

IV. Conclusion
This study presents a comprehensive machine learning (ML) framework to predict the thermophysical properties of

ionic liquids (ILs) and identify novel ILs with superior properties for single-phase pumped fluid loops in spacecraft
thermal control systems. Deep neural networks (DNN) and random forest classifiers were developed and evaluated
for predicting viscosity and liquid phase transition temperature (LPTT), respectively. The models were trained using
curated datasets of 1,139 ILs for viscosity and 1,458 ILs for LPTT, incorporating molecular descriptors and temperature
as features.

Key findings include the successful application of the IL-split method for evaluating model performance on unseen
ILs, achieving acceptable predictive performance (𝑅2 of 0.902) despite the limitations of small dataset size and feature
dominance by temperature. For LPTT, classification at a 243 K threshold yielded robust results, emphasizing the
importance of balanced datasets for threshold-based models. Feature importance analysis using SHAP values highlighted
temperature as the most influential predictor for viscosity, reinforcing its significance in IL property prediction.

The trained models were applied to a dataset of 328,740 generated ILs to predict viscosity and LPTT, screening
for ILs with low viscosity and LPTT below 243 K. The selected ILs, particularly those containing the “3-azido-1-(2-
azidoethyl)-1H-1,2,4-triazol-1-ium” cation, demonstrated promising characteristics for spacecraft thermal management.
However, the lack of experimental validation underscores the need for further experimental studies to confirm the
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predictions, especially for low-temperature viscosity values.
This work establishes a scalable and efficient methodology for identifying high-performance ILs, addressing a critical

research gap in heat transfer fluids for extreme environments. Future research will focus on integrating experimental
validation with iterative ML model refinement to enhance prediction accuracy and support the development of advanced
ILs for thermal management applications.
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